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Abstract

Sharks are one of the most threatened groups of marine animals, as high exploitation rates coupled with low resilience to
fishing pressure have resulted in population declines worldwide. Designing conservation strategies for this group depends
on basic knowledge of the geographic distribution and diversity of known species. So far, this information has been
fragmented and incomplete. Here, we have synthesized the first global shark diversity pattern from a new database of
published sources, including all 507 species described at present, and have identified hotspots of shark species richness,
functional diversity and endemicity from these data. We have evaluated the congruence of these diversity measures and
demonstrate their potential use in setting priority areas for shark conservation. Our results show that shark diversity across
all species peaks on the continental shelves and at mid-latitudes (30–40 degrees N and S). Global hotspots of species
richness, functional diversity and endemicity were found off Japan, Taiwan, the East and West coasts of Australia, Southeast
Africa, Southeast Brazil and Southeast USA. Moreover, some areas with low to moderate species richness such as Southern
Australia, Angola, North Chile and Western Continental Europe stood out as places of high functional diversity. Finally,
species affected by shark finning showed different patterns of diversity, with peaks closer to the Equator and a more oceanic
distribution overall. Our results show that the global pattern of shark diversity is uniquely different from land, and other
well-studied marine taxa, and may provide guidance for spatial approaches to shark conservation. However, similar to
terrestrial ecosystems, protected areas based on hotspots of diversity and endemism alone would provide insufficient
means for safeguarding the diverse functional roles that sharks play in marine ecosystems.
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Introduction

To derive a global conservation strategy for higher taxa (i.e.

above the species level) it is fundamental to know where different

species occur and which geographic areas harbour high species

richness, concentrations of endemic or threatened species, or

unique communities of species [1]. Increasing evidence, both in

marine and terrestrial environments, shows that so-called ‘hot-

spots’ of total species richness are not always concordant with

hotspots of endemism or threat and that concentrations of

threatened species or local endemics may also occur in areas of

lower richness [2,3]. Therefore, a conservation strategy cannot be

based solely on the hotspot approach, but needs to consider other

biogeographic units in order to protect the full range of

biodiversity [4].

Sharks are one of the most threatened groups of marine animals

worldwide. According to a recent global assessment, 830,000

tonnes of sharks and rays are reportedly landed each year and

landings are increasing steadily at an approximate rate of 2%

annually [5]. Earlier studies estimated that 60 million individuals

[6] or 1.35 million tonnes [7] of sharks and rays are killed globally,

either in target fisheries or as unintended bycatch. These numbers

were based primarily on reported catches, and may still be

underestimates considering that the burgeoning shark fin trade

alone involved a minimum of 26 to 73 million sharks per year in

the late 1990s [8], with a combined weight of 1.7 million tonnes

per year (median estimate). This volume has recently been

increasing at an annual rate of 5.4% [9]. High exploitation rates

coupled with a slow life history and low resilience to fishing

mortality have resulted in population declines, particularly of large

sharks, worldwide [e.g. 10–17] and pose a serious threat for the

survival of many species. Several management strategies, such as

setting maximum allowable catches and size limits, or closing of

particular areas, have been developed to conserve individual

species of sharks, particularly highly commercial ones [5,18–20].

Yet, as these measures are often restricted to particular species,

they may not offer a general framework for conserving the full

diversity of sharks. A geographic conservation approach, in

contrast, may include a wide variety of species of different

ecological characteristics in a given area. Such an approach would

require knowledge of the geographic distribution of all species in

order to determine the distribution of shark diversity and

endemicity and the levels of congruence between these two

measures of biodiversity. In addition, an important first step is to

assess the potential usefulness of a geographic approach, since it

might require large enforcement efforts depending on the

extension of the areas to protect. This information is so far

lacking for sharks.
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Global patterns of marine diversity have been, so far, studied in

groups with high habitat specialization, resulting in conflicting

patterns. For example, corals and coral-reef fauna peak in the

tropics [2,21–23], while highly pelagic tunas and billfish [24–26]

and planktonic foraminifera [27] tend to reach maximum diversity

at mid-latitudes. Studies that include multiple taxa have been

conducted on a more restricted geographic scale. In the Western

Central Pacific, an equatorial center of diversity has been reported

in the Philippines, although two secondary peaks of diversity off

Taiwan and Eastern Australia, on the edges of the study area, were

also detected [28], coinciding with the patterns found for tunas

and billfishes [24–26]. Sharks offer a good model to elucidate

patterns of marine diversity because they are widely distributed in

the world’s oceans, inhabit a variety of habitats and have a

manageable number of described species (507), as compared with

marine bony fishes (.15,000 spp.) or invertebrates (.100,000

spp.).

Here we (1) determine global richness and endemism hotspots

for sharks and evaluate their usefulness for area prioritization for

conservation; (2) compare global shark richness hotspots with

hotspots for species threatened by the fin trade; (3) determine

global hotspots for shark functional diversity – as measured by the

richness of shark ecomorphotypes (see methods) – and (4) discuss

conservation measures required to preserve sharks at the global

scale.

Results

Shark species richness was found to be highest on continental

shelves and markedly lower in the open ocean (Fig. 1). Latitudinal

patterns showed a bimodal distribution of species richness peaking

between 30 and 40 degrees of latitude in both hemispheres

(Fig. 2A). Also, for the same latitude, the Western Pacific Ocean

harboured more species per cell than any other part of the world

(Fig. 2B); in particular the region from Southern Japan to

Southern Australia showed the highest richness of sharks

worldwide (Fig. 1). Individual hotspots of species richness were

located off Southern Japan and Taiwan (up to 85 species per

1u61u cell) and off Northeast and Southeast Australia (up to 74

species per cell) (Fig. 1).

Species included in the shark fin trade (n = 52) include large

coastal carcharhinids such as Grey reef (Carcharhinus amblyrhynchos)

and Bull shark, (C. leucas), coastal-pelagic species such as Great

white (Carcharodon carcharias) and Hammerhead sharks (Sphyrna

spp.), and oceanic species such as Oceanic whitetip (C. longimanus)

and Thresher sharks (Alopias spp.), among others. Many of these

species are recognized as globally threatened by the International

Union for the Conservation of Nature (see www.iucnredlist.org),

and represent an urgent conservation priority [8–9,12–13,19–20].

Species included in the shark fin trade, however, showed markedly

different patterns of diversity when compared to all shark species.

Areas of high richness of fin-trade species were broader in

geographic extent, located closer to the Equator, and extended

more towards open-ocean areas, reflecting a high proportion of

pelagic species (Fig. 3A).

Centers of shark species endemism (Fig. 3B) and functional

richness (Fig. 3C) coincided in general terms with areas of high

species richness, although with much variability. Southern Japan,

Taiwan, the East and West coast of Australia, Southeast Africa,

Southeast Brazil and the Southeast USA all showed high species

richness, high endemism and functional richness. Some additional

areas with high functional richness, like Southern Australia,

Angola, North Chile and Western Continental Europe, only

showed low to moderate species richness, however.

Using a hierarchical cluster analysis on all cells and species

occurring in those cells, we identified 93 biogeographic units,

which we defined as areas characterized by a unique community

of shark species, ranging in size from 2 to 9645 one-degree cells

(mean = 311 cells, see Methods for details). Most of these distinct

shark communities were located on continental shelves and slopes

(see Supporting Figure S1). Few biogeographic units covered large

expanses in the open sea; those were mainly found in tropical

areas.

Within each of these 93 biogeographic units, we then identified

those cells with the highest (95th percentile) species richness or

endemicity in order to derive a structured framework for area

prioritization. Based on these criteria we identified 4103 priority

cells (14.2% of all cells) as possible areas for shark conservation

(Fig. 3D), with the number of priority areas per biogeographic unit

varying from 1 to 895 cells, or 5.1 to 67.7% (mean 15.3%) of each

Figure 1. Global pattern of total shark species richness. The map indicates the number of shark species present in each cell of 1u longitude by
1u latitude. Richness hotspots of .50 shark species are coloured in bright green, yellow and red.
doi:10.1371/journal.pone.0019356.g001
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biogeographic unit’s total number of cells. The biogeographic

units with the highest number of priority areas were located in the

open ocean, due to the large geographic extension of open-ocean

biogeographic units (see Supporting Figure S1).

Discussion

In this paper we have compiled and presented a global database

of shark distribution for all species, and have derived global

patterns of shark richness, endemicity and functional diversity.

These patterns are based on a synthesis of all published

information to date, and as such may help to inform marine

conservation planning with respect to sharks. We have found that

(1) shark species richness and endemicity are highest on

continental shelves and at intermediate latitudes, (2) centers of

shark species richness and endemicity tend to be geographically

small, with only a few areas harbouring a disproportionately large

species richness and endemicity, (3) total shark species richness,

richness of finned species, endemicity and functional richness show

some notable spatial differences, and (4) shark conservation may

be difficult to pursue if based solely on a protected-area

framework, due to the large spatial extent of conservation priority

areas that represent all major biogeographic units; this is par-

ticularly true for the conservation of highly pelagic communities

in the open ocean.

Based on our compilation of the available evidence, shark

species richness was shown to peak at mid-latitudes, rather than at

the tropics. A similar latitudinal pattern has been described for

some highly oceanic groups, such as Foraminifera and tuna and

billfishes, which show broad peaks of species richness between 20u
and 30u in both hemispheres [24–27]. In tuna and billfishes, the

causes of this pattern have been linked to optimal temperatures at

those latitudes, in combination with the presence of highly

productive frontal zones [25]. The pattern of species richness

observed in sharks is different to that of Foraminifera and tunas

and billfishes, however, in that it tends to peak at higher latitudes

(30u–40u), and in coastal and shelf areas, rather than in the open

oceans. Past research on marine fishes (mostly teleosts) has

suggested the Philippines as a center of marine biodiversity [28].

In contrast, we found that shark species richness was lower in the

Philippines compared to subtropical and temperate areas such as

Taiwan, Southern Japan, and Eastern Australia. These differences

could be due to different habitat requirements of sharks (as

compared to teleost fishes) and the wider geographic scope of our

Figure 2. Relationship of shark species richness with (A) latitude and (B) longitude. Negative numbers indicate latitude south or longitude
west.
doi:10.1371/journal.pone.0019356.g002
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study. Carpenter and Springer’s [28] previous results agree with

the present study in describing high diversity off Taiwan and

Southeast Australia, which they attributed to the mixing of tropical

and temperate faunas.

Individual hotspots of species richness and endemicity are

concentrated in relatively small areas, yet basing a global strategy

for shark conservation on these hotspots alone would leave many

species without protection; this problem has already been noted in

the terrestrial realm [4]. Including other aspects of biodiversity

such as communities or ecosystems has been suggested as an

alternative [4]. Our results indicate that a geographic approach to

shark conservation that accounts for the biogeographic structure of

unique shark communities would require much larger and more

widespread areas than a classical hotspot approach that would

only focus on the most species-rich cells.

Several caveats apply to our approach, which is necessarily

based on existing, published knowledge. Most importantly, the

existing knowledge is biased towards well-known species and

regions. Our database reveals low data density and resulting

increased uncertainty in the deep-sea and open ocean. Much more

work is needed to resolve fine-scale distribution patterns in those

habitats. We further note that our results should be applied

cautiously with respect to reserve design. In addition to the

abovementioned uncertainties we have not incorporated impor-

tant ecological (e.g. dispersal and connectivity) or human-related

variables (e.g. levels of exploitation) that may affect reserve design,

and have not explicitly considered the costs and benefits of

different conservation solutions. Nevertheless, our results do

suggest that protected areas designed to conserve different shark

communities would likely need to be very large, especially in

oceanic waters. The inclusion of additional ecological criteria, such

as connectivity among reserves, may lead to even larger priority

areas, perhaps beyond the possibility of effective enforcement.

The evidence from our study suggests that conservation priority

areas for species that are threatened by the burgeoning fin trade

should be different than those for all shark species. Fin-trade

species compared with all species tended to be concentrated more

towards tropical regions, and towards open ocean waters. This

finding is partly explained by a higher proportion of pelagic species

in the fin trade, relative to all species, and supports the concept of

using data from as many taxa and criteria as possible when

designing conservation strategies [3]. From a conservation

perspective it implies possible problems with enforcement of

finning regulations in tropical countries with low management

capacity, as well as on the high seas.

Furthermore we note that many areas with moderate species

richness showed high functional richness, indicating that individ-

ual species may play unique ecological roles, and hence have low

ecological redundancy. This means that different functions are

fulfilled by few species, which may be important in maintaining

the structure and function of some marine ecosystems [15].

In conclusion, we suggest that protecting the areas of high shark

diversity found in our analysis could form part of a broader

strategy to protect threatened marine species. The fact that these

areas lie largely within coastal states’ territorial waters, and that

many of these states have good regulatory capacity (e.g. Australia,

The United States, Japan) provides hope for more effective shark

conservation, However, the large geographical extent of many

priority areas that include both high richness and endemicity

across representative biogeographic units casts doubt on the use of

a global network of protected areas as a comprehensive strategy

for shark conservation; the large extent of priority areas in

international waters is especially problematic, since management

and policing in those areas is more difficult to achieve compared

with territorial waters. This problem extends particularly to fin-

trade species which include a number of highly pelagic species. It is

obvious that alternative approaches must form part of a

comprehensive strategy to limit the fishing mortality of sensitive

species, and halt the ongoing decline of shark populations [12, 19,

29]. We hope that the database that we have compiled can inform

such a strategy, both at regional and global scales.

Methods

Data
The geographic distribution of each of 507 known shark species

was extracted using available distributional data and expert

knowledge from the scientific literature (from 1878 to present) and

compiled in a Global Shark Distribution Database (Supporting

Text S1, and Supporting Table S1 and Table S2). We included all

species described and currently recognized by shark systematists, as

well as species that are still unnamed but are already known to

science. A detailed list of the species included and the supporting

references for them can be found in the Supporting Information

(Table S1 and Table S2). We used authoritative identification

guides [e.g. 30–34] as a first approximation to the distribution of

each species and obtained more precise limits with primary research

papers, updated taxonomic reviews, reported range extensions,

regional species lists and guides, and technical reports from fishery

organizations (Table S2). If a species was regarded only as

potentially present in a given area, or there were doubts about its

real presence in a given area, we did not include that area in our

maps. Thus, only cells with confirmed records of the species were

included in the range maps. We also used point data from collection

specimens included in the Global Biodiversity Information Facility

(http://data.gbif.org), when these data were supported by a

scientific publication. This information, however, is spatially non-

homogenous and may vary in precision, as some areas (such as

North America, Europe, or Australia) and species (such as

commercial ones) are much better studied than others. Unfortu-

nately, we could not standardize the database by research effort per

unit area, due to the diverse nature of sources and sampling

methods.

Published bathymetric limits were used to define the vertical

distribution of each species; i.e. once the geographic limits of a

species’ distribution were identified, the vertical distribution limits

were superimposed to identify the cells containing suitable habitat

for the species to occur within the known range. This was done

because depth is well known to strongly influence shark

distribution and because bathymetric limits are known for a large

majority of shark species, whereas the relative importance of other

environmental variables (e.g. temperature, oxygen, bottom type) is

much less resolved. For 59 widely distributed species that showed

regional variation in their bathymetric limits (e.g. spiny dogfish

Figure 3. Shark conservation priorities. (A) Richness pattern of 52 shark species affected by the shark fin trade. (B) Pattern of shark endemism,
quantified as the sum of the inverse of the geographic range size of all species present in the cell. (C) Pattern of shark functional richness, quantified
as the number of shark ecomorphotypes (as defined by Compagno 1990) present in the cell. (D) Priority areas for shark conservation; each area was
selected because it contains either the top 5% of species richness or endemism for each of 93 major shark biogeographic units (areas characterized
by the presence of a unique set of species as identified by a cluster analysis).
doi:10.1371/journal.pone.0019356.g003
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Squalus acanthias, school shark Galeorhinus galeus), we partitioned the

range map to accommodate the different depth limits. The

distribution of species known only from a few individuals (less than

30 specimens) usually comprised actual records regardless of

depth.

Mapping
We used the R package PBSmapping [35] to build all maps. To

map depth limits, bathymetric data were obtained from the well-

known TOPEX topography database (http://topex.ucsd.edu)

[36]. A grid of 1 degree latitude by 1 degree longitude was

superimposed on each species’ distribution map and one data

point was recorded for each cell where the species was present.

This particular scale was chosen because it approximates the

spatial resolution of most distribution records that we reviewed,

and because it is still fine enough to be useful in regional

conservation planning exercises.

Analysis
Species richness for each cell was obtained by summing the

number of species occurring in each cell. We calculated species

richness once for all species, and once for the 52 species that have

been reported in the shark fin trade, as they may represent an

urgent conservation priority due to high rates of exploitation [8,9].

A species was included only if there was a scientific publication

that documented its inclusion in the fin trade (Table S1). This list

may not be complete, yet it represents our best knowledge of the

fin trade based on published information. Endemism was

estimated for each cell as the sum of the inverse of the range of

the species present in that cell [21]. The range of a species was

defined as the number of cells in which that species occurred.

Functional diversity was assessed by classifying the 507 shark

species according to Compagno’s [37] ecomorphotype description

(Table S1). A particular ecomorphotype includes species, taxo-

nomically related or not, that are similar in morphology, habitat

and behaviour [37]. Consequently, areas with high richness of

ecomorphotypes would have sharks performing more ecological

functions than areas with low ecomorphotype diversity. We

mapped the distribution of functional (ecomorphotype) richness as

above.

In a further analysis, we identified shark biogeographic units in

order to describe the distribution of unique shark communities and

then obtained a grid of priority areas representative of all shark

communities. Global shark biogeographic units were identified by

using a hierarchical cluster analysis, a standard method used to

find structure in a multivariate dataset. For this analysis, we used

the Bray-Curtis dissimilarity index to group all 1u61u cells

according to their dissimilarity in the occurrence of shark species;

clusters were identified at 70% dissimilarity [38]. The results were

cells grouped together according to their similarity in shark species

composition. In this way, we could identify 93 biogeographic units

that corresponded to large-scale communities of similar species

composition.

For each biogeographic unit, we identified the cells with the

highest species richness or endemicity. These cells were defined as

those having, at least, values of species richness or endemicity

equal to the 95th percentile of the species richness or endemicity

distribution of a given assemblage. In this way, we could identify

the areas containing the highest number of species and the highest

number of unique species for every shark biogeographic unit in the

world in order to capture the largest number of species and unique

species for every biogeographic unit.

Supporting Information

Text S1 Introduction to the global shark database.

(PDF)

Table S1 Species list. It is indicated whether species are

documented in the shark fin trade (FT), and which ecomorphotype

(following Compagno 1990b) they represent.

(PDF)

Table S2 Data sources used in the mapping of shark species

richness.

(XLS)

Figure S1 Global shark biogeographic units identified by a

hierarchical cluster analysis on 507 shark species known to date.

Different colours and patterns identify distinct biogeographic

units. Biogeographic units are shown in different panels to improve

visualization.

(TIF)

Acknowledgments

The authors thank Catherine Muir for valuable comments on this

manuscript, and the Lenfest Ocean Program for funding this study.

Comments by Shelley Clarke, Steven Campana and two anonymous

reviewers helped to improve this manuscript considerably.

Author Contributions

Conceived and designed the study: LOL VBG BW. Analyzed the data:

LOL VBG. Contributed reagents/materials/analysis tools: LOL VBG

BW. Wrote the manuscript: LOL VBG BW.

References

1. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:

243–253.

2. Hughes TP, Bellwood DR, Connolly SR (2002) Biodiversity hotspots, centres of

endemicity, and the conservation of coral reefs. Ecol Lett 5: 775–784.

3. Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, et al. (2006)

Global distribution and conservation of rare and threatened vertebrates. Nature

444: 93–96.

4. Kareiva P, Marvier M (2003) Conserving biodiversity coldspots. Am Sci 91:

344–351.

5. Camhi MD, Valenti SV, Fordham SV, Fowler SL, Gibson C (2009) The

conservation status of pelagic sharks and rays. Newbury: IUCN Species Survival

Commission Shark Specialist Group. 78 p.

6. Compagno LJV (1990a) Shark exploitation and conservation. In: Pratt Jr. HL,

Gruber SH, Taniuchi T, eds. Elasmobranchs as living resources: advances in

the biology, ecology, systematics, and the status of the fisheries. NOAA Tech

Rep NMFS 90: 391–414.

7. Bonfil R (1994) Overview of world elasmobranch fisheries. FAO Fisheries

Technical Paper 341: 1–149.

8. Clarke SC, McAllister MK, Milner-Gulland EJ, Kirkwood GP, Michielsens CGJ,

et al. (2006) Global estimates of shark catches using trade records from

commercial markets. Ecol Lett 9: 1115–1126.

9. Clarke SC (2004) Shark product trade in Hong Kong and mainland China and

implementation of the CITES shark listings. Hong Kong: TRAFFIC East Asia.

53 p.

10. Musick JA, Branstetter S, Colvocoresses JA (1993) Trends in shark abundance

from 1974 to 1991 for the Chesapeake Bight region of the U.S. Mid-Atlantic

coast. In: Branstetter S, ed. Conservation Biology of Elasmobranchs. NOAA

Tech Rep NMFS 115: 1–18.

11. Graham KJ, Andrew NL, Hodgson KE (2001) Changes in relative abundance of

sharks and rays on Australian South East Fishery trawl grounds after twenty

years of fishing. Mar Freshw Res 52: 549–561.

12. Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, et al. (2003) Collapse

and conservation of shark populations in the Northwest Atlantic. Science 299:

389–392.

13. Baum JK, Myers RA (2004) Shifting baselines and the decline of pelagic sharks

in the Gulf of Mexico. Ecol Lett 7: 135–145.

Global Shark Diversity

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19356



14. Massa AM, Lucifora LO, Hozbor NM (2004) Condrictios de las regiones

costeras bonaerense y uruguaya. In: Sánchez RP, Bezzi SI, eds. El Mar
Argentino y sus recursos pesqueros. Tomo 4. Los peces marinos de interés

pesquero. Caracterización biológica y evaluación del estado de explotación. Mar

del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero. pp 85–99.
15. Ferretti F, Worm B, Britten G, Heithaus MR, Lotze HK (2010) Patterns and

ecosystem consequences of shark declines in the ocean. Ecol Lett doi: 10.1111/
j.1461-0248.2010.01489.x.

16. Robbins WD, Hisano M, Connolly SR, Choat JH (2006) Ongoing collapse of

coral-reef shark populations. Curr Biol 16: 2314–2319.
17. Ferretti F, Myers RA, Serena F, Lotze HK (2008) Loss of large predatory sharks

from the Mediterranean Sea. Conserv Biol 22: 952–964.
18. Pollard DA, Smith MPL, Smith AK (1996) The biology and conservation status

of the grey nurse shark (Carcharias taurus Rafinesque 1810) in New South Wales,
Australia. Aquat Conserv: Mar Freshw Ecosyst 6: 1–20.

19. Fowler SL, Cavanagh RD (2005) International conservation and management

initiatives for chondrichthyan fish. In: Fowler SL, Cavanagh RD, Camhi M,
Burgess GH, Cailliet GM, Fordham SV, Simpfendorfer CA, Musick JA, eds.

Sharks, skates, rays and chimaeras: the status of chondrichthyan fishes. Gland
and Cambridge: IUCN. pp 58–69.

20. Camhi MD, Fordham SV, Fowler SL (2008) Domestic and international

management for pelagic sharks. In: Camhi MD, Pikitch EK, Babcock EA, eds.
Sharks of the open ocean. Oxford: Blackwell. pp 418–444.

21. Roberts CM, McClean C, Veron JEN, Hawkins JP, Allen GR, et al. (2002)
Marine biodiversity hotspots and conservation priorities for tropical reefs.

Science 295: 1280–1284.
22. Mora C, Chittaro PM, Sale PF, Kritzer JP, Ludsin SA (2003) Patterns and

processes in reef fish diversity. Nature 421: 933–936.

23. Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-
Pacific coral reef fishes. Aquatic Conserv: Mar Freshw Ecosyst 18: 541–556.

24. Worm B, Lotze HK, Myers RA (2003) Predator diversity hotspots in the blue
ocean. Proc Nat Acad Sci USA 100: 9884–9888.

25. Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (2005) Global patterns

of predator diversity in the open ocean. Science 309: 1365–1369.

26. Boyce DG, Tittensor DP, Worm B (2008) Effects of temperature on global

patterns of tuna and billfish richness. Mar Ecol Prog Ser 355: 267–276.

27. Rutherford S, D’Hondt S, Prell W (1999) Environmental controls on the

geographic distribution of zooplankton diversity. Nature 400: 749–753.

28. Carpenter KE, Springer VG (2005) The center of the center of marine shore fish

biodiversity: the Philippine Islands. Environ Biol Fish 72: 467–480.

29. Cosandey Godin A, Worm B (2010) Keeping the lead: how to strengthen shark

conservation and management policies in Canada. Mar. Policy 34: 995–1001.

30. Compagno LJV (1984) FAO Species Catalogue. Vol 4. Sharks of the world. Part

1 and 2. FAO Fish Synop 125: 1–655.

31. Compagno LJV (2001) Sharks of the world. Volume 2. Bullhead, mackerel and

carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO

Species Catalogue for Fishery Purposes. No. 1, Vol. 2. Rome: FAO. 269 p.

32. Compagno LJV, Dando M, Fowler S (2005) A field guide to the sharks of the

world. London: Collins. 368 p.

33. Yano K, Ali A, Gambang AC, Hamid IA, Razak SA, et al. (2005) Sharks and

rays of Malaysia and Brunei Darussalam. Kuala Terengganu: SEAFDEC-

MFRDMD/SP. 557 p.

34. Last PR, Stevens JD (2009) Sharks and rays of Australia, second edition.

Cambridge: Harvard University Press. 644 p.

35. Schnute JT, Boers NM, Haigh R, Couture-Beil A (2008) PBS Mapping 2.55:

users guide revised. Can Tech Rep Fish Aquat Sci 2549: 1–118.

36. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite

altimetry and ship depth soundings. Science 277: 1957–1962.

37. Compagno LJV (1990b) Alternative life-history styles of cartilaginous fishes in

time and space. Environ Biol Fish 28: 33–75.

38. Menni RC, Jaureguizar AJ, Stehmann MFW, Lucifora LO (2010) Marine

biodiversity at the community level: zoogeography of sharks, skates, rays and

chimaeras in the Southwestern Atlantic. Biodivers Conserv 19: 775–796.

Global Shark Diversity

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e19356


